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The Use  of  a Redundant Axis in Defining the Basis of  a Lattice 
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The description of n-dimensional space by a basis of (n+ 1) vectors, a~ (i= 1, . . . ,  n+ 1), is discussed, 
with particular reference to the Miller-Bravais system of indexing hexagonal crystals. It is shown that 
if a hyperplane with normal h makes intercepts h E a on the a~ and a vector u has components m relative 
to the a~, then h.  u= 7h~ui without any further restrictions on the h~ or m. Furthermore, it is possible 
to find a basis a~'(i = 1, . . . ,  n + 1) for reciprocal space such that h = 7h~a~" is always true and indeed there 
are n degrees of freedom available for choosing such a basis. Criteria which may lead to a unique choice 
of a~r are discussed. 

1. Introduction 

Hexagonal crystals are usually described by means of 
the so-called Miller-Bravais 4-index system, since the 
4 axes [na~, i =  1,2,3, and e in Fig. l(a)] provide a 
symmetrical basis for the hexagonal lattice and it is 
possible to find a similarly symmetric basis [nat*, 
i =  1,2,3, and e t in Fig. l(b)] to describe the reciprocal 
lattice. Although these bases are, of course, not reci- 
procal to one another (see e.g. Nicholas, 1970), they 
have the properties that: 

(a) if the indices of a plane (hkil) are defined as the 
reciprocals of its intercepts on na~ and e, then 

h + k + i = O ,  (1) 

and the normal to the plane is given by 

h =  hHa I + kHa* 2 + ilia* s + let, (2) 

where the magnitude of h is equal to the reciprocal of 
the distance of the plane from the origin; and 
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(b) since one of the axes is redundant, only directions 
[uvtw] having 

u + v + t = O  (3) 

need to be recognized (Weber, 1922), and [uvtw] is 
parallel to (hkil) if and only if 

hu+ kv+ it + lw=O . (4) 

The use of the redundant axes Ha3 ( = -- Has - Ha2) and 
Ha~ (=- -Hat - -HaD is justified by the relatively simple 
crystallographic formulae that arise. Furthermore, 
Frank (1965) has shown how the hexagonal lattice and 
its reciprocal can be derived from four-dimensional 
orthogonal lattices whose obvious bases project to 
give Hat, e and Ha;, e* in three dimensions. Prior to 
Frank's paper, the basis of Miller-Bravais indexing 
seems never to have been examined with sufficient 
depth and rigour. 

The aim of tkis paper is to consider the more general 
problem of introducing a redundant vector into the 
basis of any lattice, to show that a basis satisfying the 
analogue of equation (2) can always be found for the 
reciprocal lattice and indeed that this basis is not uni- 
que. The virtue of having such a relation is that the 
usefulness of the concept of the reciprocal lattice is 
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carried through into this case. The problem is con- 
sidered for n-dimensional space since such a generaliza- 
tion produces no significant increase in complexity; 
results for the hexagonal lattice are derived as an ex- 
ample. It is found that relation (4) is true under much 
less restrictive conditions than those prescribed above 
and, indeed, that it and its generalization are true 
provided only that the indices of a plane are defined as 
the reciprocals of its intercepts on the base vectors. 

2. Preliminary comments about the hexagonal lattice 

By virtue of equation (1), equation (2) can be rewritten 
as 

h=h(,ua*l +dt)+k(Ra~ +d*)+i(~a] +d*)+lc t, (5) 

where d* is any vector, i.e. equation (2) is still valid when 
the reciprocal lattice is described by the basis Ha~ * + d*, 
( i=1,2,3) ,  c*. This is contrary to the statement in 
Frank (1965) which implies that labelling the reciprocal 
lattice points by the indices of the planes to which they 
are normal determines a unique basis for the reciprocal 
lattice. 

Similarly, equation (4) can be rewritten as 

h ( u + z ) + k ( v + z ) + i ( t + z ) + l w = O  , (6) 

where z is an arbitrary scalar, i.e. equation (4) is true 
for directions whose components do not satisfy equa- 
tion (3). The special case of z = - t reduces equation (6) 
to the form appropriate to indexing on the three-axis 
hexagonal (sometimes called monoclinic) system. 

3. General case of a redundant axis 

We will consider an n-dimensional space. To describe 
such space, n linearly-independent vectors are needed, 
but we will choose (n + 1) vectors a, ( i=  l, 2 , . . . , n  + 1) 
so that one vector is redundant and precisely one 
linear relation exists between the a,. Let this relation be 

fl, a , = 0 ,  (7) 

where the fli are constants and a repeated suffix will be 
taken to imply summation over 1 to n + 1. It is possible 
that some of the fl, are zero but this is ignored until the 
last part of this section where its effects are considered 
in detail. 

~ct3 

c ve~.i.c,',t~ u.p ~ , • " ~  t • 
C vert[cmLLs~ ¢ko xQ~ 

(=) (b) 
Fig. 1. Four-axis bases used for describing (a) the direct 

hexagonal lattice and (b) the corresponding reciprocal lattice. 

If  we now consider a hyperplane (hereafter abbre- 
viated to plane) P in this space (Fig. 2) and suppose that 

(A. 1) P makes intercepts 1/h, on the base vectors a,, 
i.e. passes through the points with position vec- 
tors al/hx, a2/h2, etc., 

(A. 2) h is a vector normal to P and of magnitude equal 
to the reciprocal of the distance, p, of P from 
the origin, and 

(A. 3) a typical vector in the space is of the form u = 
U~ a~, 

then the following questions are of interest. 

Q. 1. What relation exists between the h~ ? 
From Fig. 2, it is clear that 

h. (ax/hl)=h.  (az/h2)=. . .  =plhl 
= 1, by virtue of (A. 2), 

i.e. 
h .  a ,=h , ,  for i = l , 2 , . . . , n + l .  

(8) 

(9) 

Thus, by taking the scalar product of h with equation 
(7), we find 

h.  fl, a,=fl,(h, a0=fl ,  h , = 0 ,  (10) 

which is a linear relation between the h,, and, since n 
of the h, can be chosen arbitrarily, this is the only 
possible relation between the h,. 

Q.2. What is the condition that u is parallel to the 
plane P? 

This condition is clearly 

h.u=O, (11) 

and we can write 

Thus, 

h .  u = h .  (uia0, by (A. 3), 

=(h. a0u~, 
= h~u~, by (9). (12) 

h~u~=O (13) 

is the required condition and this holds without any 
other restriction on the u~; in particular, the analogue 
of equation (3) is not necessary for equation (13) [the 
analogue of equation (4)] to hold. In fact, equation (13) 
is true whenever the h, are defined as reciprocal inter- 
cepts on the a, and the u, are defined conventionally. 

Q. 3. Is it always possible to find a set o f  vectors a~ 
such that, for any h, 

h=hia~,  (14) 
and, i f  so, what conditions must such vectors 
satisfy ? 

Clearly, one possible set is formed by choosing 
al, . . . ,  a*~ t o  be a basis reciprocal to am, . . . ,  an and 
putting a*~+t =0,  i.e. by simply ignoring a,+ v Further, 
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since the ordering of the ai is arbitrary, other solutions 
can be found by a similar process based on any n of 
the a,. The question then becomes that of looking for 
the most general solution. 

If  equation (14) holds, equation (9) can be rewritten 
as 

h t art. a I = hj (15) 
i.e. 

h:(a~, a j - J ~ j ) = 0 ,  for j =  1, . . . ,  n +  1. (16) 

Since each of the equations in the set (16) is a linear 
relation between the hi, each must be equivalent to a 
linear multiple of equation (10), i.e. 

a~. a, =Jo+fl~fl, , (17) 

where the fl}t are a set of constants, as yet arbitrary, and 
(17) is a set of (n+ 1) 2 equations, each corresponding 
to a particular choice of i and j. 

By taking all equations (17) with a particular i, 
multiplying each by its appropriate flj and summing, 
we get 

a; .  fl, a, =fl lJu +fljfl~fl, 
=fl,(l  + fl, fl~) . (18) 

For each such equation (18), equation (7) implies that 
the left-hand side is zero and thus, either all fli are 
zero (which is impossible) or 

fl~fl, + 1 = 0 .  (19) 

Thus, of the n +  1 constants fl~, n can be chosen ar- 
bitrarily and the last must then be chosen to satisfy 
equation (19). 

Conversely, by taking all equations (17) with a 
particular j, multiplying each by its appropriate fl~ and 
summing, we get 

fltat al=f l t ( j , ]÷ fltfl, ) I I ° 

=fit(1 +fltf l , )=0,  by virtue of (19). (20) 

Thus, the vector sum t t fliai is perpendicular to each of 
the as ( j =  1, . . . ,  n + 1) and this can only be true if it 
is the null-vector, i.e. 

flfa* = 0 (21) I 1 

Equation (21) is the analogue of equation (7) and shows 
that the fl~ are related to the a~ in the same way as the 
fl~ are to the ai; this justifies the notation introduced at 
equation (17). 

Equation (19) shows that we have n degrees of free- 
dom in our choice of the a~, a choice which can be 
exercised, for instance, by choosing the n scalars 
fl~, . . . ,  ,8, t say, or by arbitrarily fixing one of the vec- 
tors, say a~+,. The special case of a~+ 1 = 0  implies that 

t f i t = . . . f l ~ = 0  and fl~+lfl,+l- - 1. Then equations (17) 
become 

a~. aj = Jo, for i , j =  1, . . . ,  n ,  (22) 

i.e. the a~ ( i = l , . . . , n )  are reciprocal to the aj 
( j =  1, . . . ,  n), i.e. we have the special solution given 
immediately after equation (14). 

Q.4.  What is the geometrical significance o f  the fl*~ 
and o f  equations (17) ? 

If we write, without using the summation convention, 
5"- -  t At - a~//?, , 

Aj =/~jaj,  
0j = / ~ I g ,  (23) 

then equations (17) become 

A~ . Aj = (flJfl ,)J,  + Oj 
=f in+O, ,  (24) 

and equation (19) becomes 
n + l  

Oj-- - 1. (25) 
j = l  

A geometric interpretation of all equations (24) with 
a given j can be obtained by drawing, in reciprocal 
space, planes P~ and/-/j  normal to Aj and at distances 
0s/IAs[ and (1 + 0S)/IAs] from the origin O* (see Fig. 3). 
Then the equations (24) imply that all A~ must extend 
from O* to Pj except for A~ which must extend to Hi. 
If  such constructions are carried through for all j, the 
intersection of H t and Pj ( a l l j ¢  i) will define the vector 
A~*, the relation (25) sufficing to ensure that these n + 1 
planes do meet in just one point. Thus, the end points 
of the A~ define an (n+ 1)-hedron, in the reciprocal 
n-space, which is fixed in size and orientation (since 
each face is normal to an A~ and the width normal to 
this face is just I&l -a) but can be located anywhere 
in reciprocal space by the appropriate choice of 
0j ( j =  1, . . . ,  n). This freedom of location allows the 
A~, and hence the a~*, to be chosen to fit, for instance, 
some desirable symmetry condition such as is pre- 
scribed below. 

Q.5. Under what conditions are symmetricallyrelated 
directions indexed equivalently ? 

The original aim of introducing a redundant axis was 
to obtain a symmetrical notation, i.e. the aim was that 
symmetricallyrelated planes and directions would have 

0 

4 
h~ 

o.t t f  Q~ 

P 

O-i. 

Fig. 2. Hyperplane P and its intersections on base axes. 
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symmetricallyrelated indices. Since the indices of 
planes are defined by the reciprocal intercepts on the 
a~, this aim for planes will be achieved by choosing a 
symmetrical set of ai, i.e. by ensuring that the 'axial 
cross', constructed from the a~ and their negatives, 
shows the required point symmetry. However, the 
situation for directions is not so obvious. 

Any point in space can be described by n + 1 coor- 
dinates u~ in a variety of ways, and to achieve symmetri- 
cal descriptions this redundancy must first be removed 
by imposing some condition on the m. Clearly, it is 
desirable that the condition should allow the coor- 
dinates to be added as vector components, i.e. that if 

then 

u+u'=u" (26) 

I !  u t + u~ = u, , for all i. (27) 

A consideration of the properties of linear functions 
shows that this result is true if and only if the relation 
between the u~ is linear and homogeneous, i.e. it must 
be of the form 

c~u~ = 0 ,  (28) 

where the c~ are constants as yet unspecified. 
A simple method of attaining the desired equivalence 

is to demand a relation between directions in real 
space and planes in reciprocal space similar to that 
already exisiting between real planes and reciprocal 
directions and then, by a suitable choice of a~, to ensure 
that equivalent planes in reciprocal space are equi- 
valently indexed. This implies that the a~ must be 
chosen to reflect the symmetry required, i.e. must have 
the same symmetry as the a~. The duality condition 
implies that a plane in reciprocal space making inter- 

cepts of ui -1 on the a~ has, as normal, the vector* 

u = u t a t .  (29) 

Hence an argument analogous to that leading from 
equation (7) to equation (10) shows that equation (21) 
implies that equation (28), the condition on the u~, is 
in fact 

,/~lu, = 0 ,  (30) 

where the stilt are the particular flit that correspond to 
the symmetric choice of a~. 

Since equation (30) alone suffices to ensure the equiv- 
alent indexing of directions, the duality condition and 
the consequent restriction on the a~, used in deriving 
the ,fl~, are not essential. However, since nothing is 
gained by dropping these latter conditions, in practice 
it is sensible to retain them. It should be stressed here 
that the truth of equation (13) does not imply duality, 
contrary to the statement in Frank (1965). 

Q. 6. How do lattice properties enter the problem ? 
The above analysis has taken no account of lattice 

properties and indeed holds true for general points and 
planes in n-space. When, however, we are concerned 
with an n-dimensional lattice, L say, the a~ should be 
chosen so that all lattice vectors are expressible as 
rational multiples of the a~ and this implies that the fl~ 
are rational and may, if desired, be chosen as a set of 
integers without a common factor. 

If  P is taken as the plane of given orientation that 
passes through lattice points and passes as close as 

* Complete consistency of notation could have been 
achieved by writing u and ut as h t and h~ t but this would have 
been confusing as it conflicts with conventional crystallo- 
graphic practice. 

a41 A4 

, I 

. . . . . .  _ - , _  

, 

I 
o ~  " " " x x . .  ~ \ 

\ " ' ' , ~ ,  _ 

(=) (~,) 

Fig. 3. Geometrical construction for finding a set of a~ t satisfying h = h~a~ t from a given set of a~. The relative scales of (a) direct 
and (b) reciprocal space are shown. To obtain a~ t from the Figure, each A~ t must be multiplied by the corresponding fl~. Other 
sets of At t (and hence a~*) can be found by translating the shaded triangle in (b). The diagram has been drawn for the particular 
relation al + 2a2 + 3a3 = 0 and for 01 = 0.4, 02 = 0.6, 03 = - 2.0. 
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possible to O without including it, then the hi can be 
written in the form 

h, =qh; , (31) 

where q is rational and the h~ are a set of integers with- 
out a common factor that are the n-dimensional 
analogues of Miller-Bravais indices for the plane.* 

If we now consider the lattice reciprocal to L, say 
L*, then any basis a~* that satisfies equations (17) is a 
satisfactory basis for L* in that equation (14) will be 
satisfied and all reciprocal lattice vectors will be rational 
multiples of the base vectors. If  the fl~ have been chosen 
as integers without a common factor then equation (19) 
ensures that it will always be possible to choose fit 
with the same properties. However, such a choice may 
conflict with symmetry requirements such as are dis- 
cussed in Q. 5; if so, then we may have to be satisfied 
with restricting the fit* to rational values. 

Q. 7. What complications arise i f  some of the fl~ are 
zero ? 

If some of the fit are zero, modification is needed to 
parts of the previous argument. Suppose that all such 
fl~ are denoted by fir, r = 1, . . . ,  l. Then, the difficulties 
could be overcome by temporarily removing the corre- 
sponding ar from consideration, working in ( n - l ) -  
dimensional space, and finally recovering the ar, but 
it seems simpler to consider each modification indi- 
vidually. 

(i) In the argument immediately following equation 
(14), the set al, . . . ,  an must include all ar. 

(ii) When choosing fl~ to satisfy equation (19), the 
n arbitrarily chosen constants must include all fir*. 

(iii) In equation (23), any Ar would be infinite. De- 
tailed consideration shows ttlat for just one zero fir, 
the (n+ 1)-hedron becomes a prism with generators 
normal to all a t ( i#  r), %* is parallel to these generators 
and of magnitude lar1-1, and the other A, end at tile 
vertices of the n-gon formed by the intersection of the 
prism with a plane perpendicular to ar. The n degrees 
of freedom available in choosing the a~* then comprise 
the n - 1  degrees available for locating the prism and 
one for locating the plane. A similar argument can be 
devised for more than one zero fl,, but it is difficult to 
express geometrically. 

(iv) In determining the limits of q for use in equa- 
tion (31), the only unit cells considered are those which 
include all at. 

4. Application to the hexagonal lattice 

Since the point symmetry of the hexagonal lattice is 

* In order to determine possible values of q, and q may vary 
from plane to plane, we first calculate the ratio of the volume 
of a primitive unit cell in the lattice to the volume of the unit 
cell defined by each set of n of the a,. Let the greatest and least 
ratios be Qmax and Qmin. Then if Qmax>__ 1, Qmax/q must be 
integral and if Qmtn_< 1, q/Qmin must be integral; if Qmax< 1, 
then q_<l and if Qmin> 1, q_>l. 

6/mmm, the 'axial cross' of the a, should by Q. 5 show 
such symmetry and tile only possible systems are: 

o r  

ai = Cnai,  i = 1,2, 3 ,  
a a = D e ,  (32) 

a l  = C ' ( H a 2 - -  Ha3), etc. 

a 4 = D ' e ,  (33) 

where Ha,, e are as in Fig. l(a) and C, D, C', D' are 
arbitrary constants. 

The convenient, and conventional, choice is of 
course to adopt equations (32) with C =  D = 1. Then, in 
the notation of § 3, 

at + a2 + a3 = hal + Ha2 + Ha3 = 0 (34) 
i.e. 

fll=fl2=fl3 =1 and f lu=0.  (35) 

Using (hkil) as indices of a plane, equation (10) 
gives the well-known result 

h + k + i + ( O . l ) = O  (1) 

and equation (4) follows immediately from equati.on 
(13) with u,=[uvtw], and no special conditions on 
u, v, t, w. 

Now, application of equations (17) shows that equa- 
tion (5), the special case of equation (14), will be true 
for any basis satisfying 

a* - o* + d*, i-- 1,2, 3 I - -  H'~t 

aat=e*, (36) 

where Ha; and e* are given in Fig. l(b), and d t is an 
arbitrary vector in reciprocal space, not necessarily 
coplanar with Ha~*. The analysis in Q. 7 (iii) shows that 
a4* is uniquely determined. 

In order to find the condition leading to symmetrical 
representation of directions, we make use of an axial 
cross of the a; which displays the symmetry of the 
reciprocal lattice, namely 6/mmm. Ttlis is achieved by 
putting d* = 0 so that we have 

at + a*2 + a*3 = Halt + Ha2* + Ra} = 0 . (37) 

Thus, from equations (19) and (21), 

P t -  ' -  ' -  - f l 2 - f l 3 - - ½  and fig*=0 (38) 

From equation (30), we now can deduce that to achieve 
the symmetrical representation of directions we need 

u + v + t = O .  (3) 

Finally, if we desire duality between the treatment of 
the direct and reciprocal lattices we choose as basis for 
the reciprocal lattice the symmetric basis of Ha;, e t, 
which is derived from equations (36) by putting 
dr=0.  Fig. l(b) shows that the relation between the 
axial cross of Ha~* and the shortest lattice vectors in the 
reciprocal lattice is analogous to equations (33) with 
C '=½ and D ' =  1, rather than to equations (32). 
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5. Conclusion 

The detailed argument above was not intended to 
suggest alternative methods of indexing the hexagonal 
system but rather to show why and when each particu- 
lar choice of axes and indices is needed. The argument 
has incidentally shown that there is no alternative 
method having all the advantages of the Miller-Bravais 
system. Our general conclusions, of which (c) and (d) 
run counter to common assumptions, can be sum- 
marized as follows: 

(a) a symmetric basis for the direct lattice is nec- 
essary for the equivalent indexing o.' ~ymmetrically- 
related planes; 

(b) the use of a redundant axis implies that a linear 
relation exists between the indices of a plane, this rela- 
tion being equation (10) in the general case or, for the 
hexagonal lattice, 

h+k+i=O; (1) 
(c) the equation 

h. u=h~u~ (12) 

[and hence equation (4) for the hexagonal lattice] holds 
irrespective of the bases chosen and its validity im- 
plies nothing about 'best' choices nor about duality 
nor about equivalent indexing of planes and direc- 
tions; 

(d) it is always possible to find a basis a~ ( i= 1, . . . ,  
n + 1) for the reciprocal lattice such that 

h=h,a~ (14) 

but the validity of this equation is not sufficient to 
define a unique basis; 

(e) the equivalent indexing of symmetrically related 
directions implies that the indices of a direction must 
satisfy a linear relationship such as equation (30), e.g. 
for the hexagonal lattice 

u+v+t=O; (3) 

(f)  duality between planes and directions in direct 
and reciprocal space can be made the final determinant 
of the choice of a reciprocal basis after symmetry con- 
ditions have been satisfied. 
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The Variation with Wavelength of the Atomic Scattering Factor for Iron 
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Physics Department, University of Birmingham, P.O.Box 3631 Birmingham, England 
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The atomic scattering factor for iron has been measured on five low-order reflexions from pure iron at 
eighteen wavelengths in the range 0.63 to 2.53/~; measurements have also been made on nickel for 
Cu Kct radiation to give additional checks with results of other workers. The variation of f for iron fol- 
lows the H6nl theory for K-electrons quite closely, except for the 110 reflexion at wavelengths just short 
of the absorption edge. The dispersion corrections were independent of angle. The limiting values of f 
at high frequencies indicated by the results agree well with other theoretical and experimental values, 
except for the 110 reflexion. 

1.Introduction 

Measurements of the atomic scattering factor f as a 
function of wavelength determine the dispersion cor- 
rection &f if a value off0, the limiting value for very 
high. frequencies, can be assumed. The relation be- 
tween f, f0 and Of is 

6f=lfl-fo~Af'+ (Af")2 
2(f0 + Af') 

Af' and Af" are the in-phase and out-of-phase parts 
of the dispersion term: in the present work, the wave- 
length variation of Ifl has been measured and no 
separate determination of Af' and Af" has been 
attempted. 

The theory of anomalous dispersion effects shows 
how Af' and Af" can be calculated in terms of the 
oscillator strengths of the electron shells (see, for ex- 
ample, James, 1962). These in turn can be computed 
from atomic wave functions (HSnl, 1933a, b) or from 
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